论文标题
非亚伯里亚人的数值模拟
Numerical simulation of non-abelian anyons
论文作者
论文摘要
二维系统(例如量子自旋液体或分数量子霍尔系统)表现出比玻色子或费米子具有更多一般统计的任何兴奋。这种异国情调的统计数据使得即使是无与伦比的人都可以解决多体制的系统。我们介绍了一种算法,该算法允许在二维晶格上模拟任何辅助紧密结合的哈密顿量。该算法直接源自低能拓扑量子场理论,适用于亚伯利亚将军和非亚伯利亚人的任何模型。作为具体的示例,我们将算法应用于研究能级间距统计数据,该统计数据揭示了自由分离的水平排斥,斐波那契人和伊斯丁。此外,我们模拟了非平衡淬灭动力学,在其中观察到密度分布在大时期变得均匀 - 表明热化。
Two-dimensional systems such as quantum spin liquids or fractional quantum Hall systems exhibit anyonic excitations that possess more general statistics than bosons or fermions. This exotic statistics makes it challenging to solve even a many-body system of non-interacting anyons. We introduce an algorithm that allows to simulate anyonic tight-binding Hamiltonians on two-dimensional lattices. The algorithm is directly derived from the low energy topological quantum field theory and is suited for general abelian and non-abelian anyon models. As concrete examples, we apply the algorithm to study the energy level spacing statistics, which reveals level repulsion for free semions, Fibonacci anyons and Ising anyons. Additionally, we simulate non-equilibrium quench dynamics, where we observe that the density distribution becomes homogeneous for large times - indicating thermalization.