论文标题

一个可扩展的基准图形网格数据集,用于研究稳态不可压缩的Navier-Stokes方程

An extensible Benchmarking Graph-Mesh dataset for studying Steady-State Incompressible Navier-Stokes Equations

论文作者

Bonnet, Florent, Mazari, Jocelyn Ahmed, Munzer, Thibaut, Yser, Pierre, Gallinari, Patrick

论文摘要

\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管努力和最近的成就,但几个研究方向仍未开发,进步仍然远远不令人满足现实现象的物理要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还引入了有关翼型上应力力的指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。

Recent progress in \emph{Geometric Deep Learning} (GDL) has shown its potential to provide powerful data-driven models. This gives momentum to explore new methods for learning physical systems governed by \emph{Partial Differential Equations} (PDEs) from Graph-Mesh data. However, despite the efforts and recent achievements, several research directions remain unexplored and progress is still far from satisfying the physical requirements of real-world phenomena. One of the major impediments is the absence of benchmarking datasets and common physics evaluation protocols. In this paper, we propose a 2-D graph-mesh dataset to study the airflow over airfoils at high Reynolds regime (from $10^6$ and beyond). We also introduce metrics on the stress forces over the airfoil in order to evaluate GDL models on important physical quantities. Moreover, we provide extensive GDL baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源