论文标题

原星盘的化学多样性及其对巨型行星形成历史的影响

Chemical Diversity in Protoplanetary Disks and Its Impact on the Formation History of Giant Planets

论文作者

Pacetti, Elenia, Turrini, Diego, Schisano, Eugenio, Molinari, Sergio, Fonte, Sergio, Politi, Romolo, Hennebelle, Patrick, Klessen, Ralf, Testi, Leonardo, Lebreuilly, Ugo

论文摘要

巨型行星可以与原星盘形成并迁移到最终轨道的多种环境中的多种和化学多样的环境相互作用。这种相互作用影响气体和固体的积聚的方式塑造了行星及其大气的化学成分。在这里,我们研究了宿主原球盘的不同化学结构对行星组成的影响。我们考虑了分子的情景(遗传前云的遗传)和光盘中原子(完全化学复位)的初始丰度。我们专注于不同波动率的四个基本示踪剂:C,O,N和S。我们通过将圆盘化学场景与形成和迁移巨型行星的N体型模拟耦合,探讨了通过观察结果所暗示的可能形成区域的整个扩展。行星形成过程产生了具有化学成分的巨型行星,从而显着偏离宿主盘的巨大行星。我们发现C/N,N/O和S/N比遵循单调趋势,迁移程度。 c/o比显示了更复杂的行为,取决于地球的积聚史和地层环境的化学结构。 S/N*和C/N*之间的比较(其中*指示与恒星值的归一化),约束气体和固体对总金属性的相对贡献。金属性由气体的贡献所支配的巨型行星的特征是N/O*> c/o*> c/n*,并允许限制盘化学方案。当行星金属性由固体的贡献支配时,我们发现c/n*> c/o*> n/o*。

Giant planets can interact with multiple and chemically diverse environments in protoplanetary discs while they form and migrate to their final orbits. The way this interaction affects the accretion of gas and solids shapes the chemical composition of the planets and of their atmospheres. Here we investigate the effects of different chemical structures of the host protoplanetary disc on the planetary composition. We consider both scenarios of molecular (inheritance from the pre-stellar cloud) and atomic (complete chemical reset) initial abundances in the disc. We focus on four elemental tracers of different volatility: C, O, N, and S. We explore the entire extension of possible formation regions suggested by observations by coupling the disc chemical scenarios with N-body simulations of forming and migrating giant planets. The planet formation process produces giant planets with chemical compositions significantly deviating from that of the host disc. We find that the C/N, N/O, and S/N ratios follow monotonic trends with the extent of migration. The C/O ratio shows a more complex behaviour, dependent on the planet accretion history and on the chemical structure of the formation environment. The comparison between S/N* and C/N* (where * indicates normalisation to the stellar value), constrains the relative contribution of gas and solids to the total metallicity. Giant planets whose metallicity is dominated by the contribution of the gas are characterised by N/O* > C/O* > C/N* and allow for constraining the disc chemical scenario. When the planetary metallicity is instead dominated by the contribution of the solids we find that C/N* > C/O* > N/O*.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源