论文标题
使用基于政策的深入强化学习和智能路由的自动驾驶汽车的交通管理
Traffic Management of Autonomous Vehicles using Policy Based Deep Reinforcement Learning and Intelligent Routing
论文作者
论文摘要
深度强化学习(DRL)使用多样化的非结构化数据,并使RL能够在高维环境中学习复杂的策略。基于自动驾驶汽车(AVS)的智能运输系统(ITS)为基于政策的DRL提供了绝佳的操场。深度学习体系结构解决了传统算法的计算挑战,同时帮助实现了AV的现实领养和部署。 AVS实施中的主要挑战之一是,即使不是可靠,有效地管理的道路上的交通拥堵可能会使交通拥堵恶化。考虑到每辆车的整体效果并使用高效且可靠的技术可以真正帮助优化交通流量管理和减少拥塞。为此,我们提出了一个智能的交通管制系统,该系统处理在交叉口和交叉口后面的复杂交通拥堵方案。我们提出了一个基于DRL的信号控制系统,该系统根据当前交叉点的当前拥塞状况动态调整交通信号。为了处理交叉路口后面的道路上的拥塞,我们使用重新穿线技术来加载道路网络上的车辆。为了实现拟议方法的实际好处,我们分解了数据筒仓,并使用来自传感器,探测器,车辆和道路的所有数据结合使用,以实现可持续的结果。我们使用Sumo微型模拟器进行模拟。我们提出的方法的意义从结果中表现出来。
Deep Reinforcement Learning (DRL) uses diverse, unstructured data and makes RL capable of learning complex policies in high dimensional environments. Intelligent Transportation System (ITS) based on Autonomous Vehicles (AVs) offers an excellent playground for policy-based DRL. Deep learning architectures solve computational challenges of traditional algorithms while helping in real-world adoption and deployment of AVs. One of the main challenges in AVs implementation is that it can worsen traffic congestion on roads if not reliably and efficiently managed. Considering each vehicle's holistic effect and using efficient and reliable techniques could genuinely help optimise traffic flow management and congestion reduction. For this purpose, we proposed a intelligent traffic control system that deals with complex traffic congestion scenarios at intersections and behind the intersections. We proposed a DRL-based signal control system that dynamically adjusts traffic signals according to the current congestion situation on intersections. To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks. To achieve the actual benefits of the proposed approach, we break down the data silos and use all the data coming from sensors, detectors, vehicles and roads in combination to achieve sustainable results. We used SUMO micro-simulator for our simulations. The significance of our proposed approach is manifested from the results.