论文标题

来自其线性限制的系统孤立波在两种组分的玻色 - 因斯坦冷凝水中,具有不等的色散系数

Systematic solitary waves from their linear limits in two-component Bose-Einstein condensates with unequal dispersion coefficients

论文作者

Wang, Wenlong

论文摘要

我们在谐波捕获的一维的两组分子玻璃晶体中系统地构建矢量孤立波,该凝结物具有不平等的分散系数,这是通过从相应的低密度线性限制到高密度非密度非密度非密度非密度非密度非密度的Thomas-thomas-Fermi状态的化学电位的数值延续。本文线性状态的主要特征是,具有较大量子数的组件具有较小的线性特征力,通过合适的不相等分散系数启用,与在均等分散设置中相似获得的状态相比,导致了新的一系列解决方案。特别是,最低的系列具有众所周知的深色 - 触觉波,第二次系列产生了深色 - 巨像状态,并且以下系列在其波浪结构中逐渐变得更加复杂。 Bogoliubov-DE Gennes光谱分析表明,这些状态中的大多数通常是不稳定的,但是它们可以长寿,并且大多数可以完全稳定在适当的参数方案中。

We systematically construct vector solitary waves in harmonically trapped one-dimensional two-component Bose-Einstein condensates with unequal dispersion coefficients by a numerical continuation in chemical potentials from the respective analytic low-density linear limits to the high-density nonlinear Thomas-Fermi regime. The main feature of the linear states herein is that the component with the larger quantum number has instead a smaller linear eigenenergy, enabled by suitable unequal dispersion coefficients, leading to new series of solutions compared with the states similarly obtained in the equal dispersion setting. Particularly, the lowest-lying series gives the well-known dark-anti-dark waves, and the second series yields the dark-multi-dark states, and the following series become progressively more complex in their wave structures. The Bogoliubov-de Gennes spectra analysis shows that most of these states are typically unstable, but they can be long-lived and most of them can be fully stabilized in suitable parameter regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源