论文标题
脑电图上学习预测模型的数据增强:系统比较
Data augmentation for learning predictive models on EEG: a systematic comparison
论文作者
论文摘要
目的:在过去几年中,将深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到相对较小的EEG数据集的限制。可以使用数据增强在培训期间人为地增加数据集的大小,以减轻此问题。虽然文献中已经提出了一些脑电图数据的增强转换,但经常在单个数据集中评估其对性能的积极影响,并将其与一种或两种竞争的增强方法进行比较。这项工作建议通过统一和详尽的分析更好地验证现有的数据增强方法。方法:我们使用三种不同类型的实验将定量13个不同的增强与两个不同的预测任务,数据集和模型进行比较。主要结果:我们证明,与经过任何培训的同一模型相比,使用足够的数据增强可以提高低数据制度的准确性45%。我们的实验还表明,由于每个任务的良好增强都不同,因此没有最佳的增强策略。意义:我们的结果突出显示了用于睡眠阶段分类和运动成像脑部计算机界面的最佳数据增强。更广泛地表明,脑电图分类任务受益于足够的数据增强
Objective: The use of deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years, yet its application has been limited by the relatively small size of EEG datasets. Data augmentation, which consists in artificially increasing the size of the dataset during training, can be employed to alleviate this problem. While a few augmentation transformations for EEG data have been proposed in the literature, their positive impact on performance is often evaluated on a single dataset and compared to one or two competing augmentation methods. This work proposes to better validate the existing data augmentation approaches through a unified and exhaustive analysis. Approach: We compare quantitatively 13 different augmentations with two different predictive tasks, datasets and models, using three different types of experiments. Main results: We demonstrate that employing the adequate data augmentations can bring up to 45% accuracy improvements in low data regimes compared to the same model trained without any augmentation. Our experiments also show that there is no single best augmentation strategy, as the good augmentations differ on each task. Significance: Our results highlight the best data augmentations to consider for sleep stage classification and motor imagery brain-computer interfaces. More broadly, it demonstrates that EEG classification tasks benefit from adequate data augmentation