论文标题
平面 - 代理模型的一致性
Integrability of planar-algebraic models
论文作者
论文摘要
量子反向散射方法是一种以$ 1+1 $尺寸求解的可集成模型的方案,该方案是建立在满足Yang-baxter方程的$ r $ -matrix上的,并且在其上构建了通勤的转移矩阵系列。在标准配方中,这种$ r $ -matrix在向量空间的张量产品上作用。在这里,我们放宽了此张力属性,并开发了一个基于平面代数的可集成模型的框架,允许不可分割的\ textit {$ r $ - operators}满足\ textit {gentryit {generalized} yang-baxter方程。当(代数)\ textit {传输操作员}在单个运动的单个积分中是多项式时,我们还重新评估了运动积分的概念和表征。我们将此类模型称为{\ em多项式整合}。在八个Vertex模型中,我们证明了相应的传输操作员在天然的哈密顿量中是多项式。在temperley- lieb循环模型中,带有循环的fugacity $β\ in \ mathbb {c} $,我们同样发现,对于几乎有限的$β$ - 价值,转移操作员在通常的templeley-lieb algebra algebra $ \ m m m m lie the the the Termeley hamiltonian中是多项式的$ n \ leq17 $。此外,我们发现该模型承认了第二个规范的哈密顿量,并且这种哈密顿量也充当了小$ n $的多项式集成性生成器,几乎有限的许多$β$ - 值。
The Quantum Inverse Scattering Method is a scheme for solving integrable models in $1+1$ dimensions, building on an $R$-matrix that satisfies the Yang--Baxter equation and in terms of which one constructs a commuting family of transfer matrices. In the standard formulation, this $R$-matrix acts on a tensor product of vector spaces. Here, we relax this tensorial property and develop a framework for describing and analysing integrable models based on planar algebras, allowing non-separable \textit{$R$-operators} satisfying \textit{generalised} Yang--Baxter equations. We also re-evaluate the notion of integrals of motion and characterise when an (algebraic) \textit{transfer operator} is polynomial in a single integral of motion. We refer to such models as {\em polynomially integrable}. In an eight-vertex model, we demonstrate that the corresponding transfer operator is polynomial in the natural hamiltonian. In the Temperley--Lieb loop model with loop fugacity $β\in\mathbb{C}$, we likewise find that, for all but finitely many $β$-values, the transfer operator is polynomial in the usual hamiltonian element of the Temperley--Lieb algebra $\mathrm{TL}_n(β)$, at least for $n\leq17$. Moreover, we find that this model admits a second canonical hamiltonian, and that this hamiltonian also acts as a polynomial integrability generator for small $n$ and all but finitely many $β$-values.