论文标题
有条件的人类轨迹预测使用迭代注意力块
Conditioned Human Trajectory Prediction using Iterative Attention Blocks
论文作者
论文摘要
人类运动预测是了解社会环境,在机器人技术,监视等中直接应用的关键。我们提出了一个简单而有效的行人轨迹预测模型,该模型旨在行人在以环境为条件下的城市风格环境中预测:地图和环绕剂。我们的模型是一种基于神经的体系结构,可以以迭代顺序方式运行几层注意力块和变压器,从而捕获环境中的重要特征以改善预测。我们表明,如果不明确引入社交面具,动态模型,社交池层或复杂的图形结构,则可以使用SOTA模型在PAR结果上产生,这使我们的方法易于扩展和配置,具体取决于可用的数据。我们报告与SOTA模型相似的结果,该模型在具有单峰预测指标和FDE的公开可用和可扩展的数据集上。
Human motion prediction is key to understand social environments, with direct applications in robotics, surveillance, etc. We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments conditioned by the environment: map and surround agents. Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion, allowing to capture the important features in the environment that improve prediction. We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models, which makes our approach easily extendable and configurable, depending on the data available. We report results performing similarly with SoTA models on publicly available and extensible-used datasets with unimodal prediction metrics ADE and FDE.