论文标题

报告中值的研究荟萃分析中的标准误差估计

Standard error estimation in meta-analysis of studies reporting medians

论文作者

McGrath, Sean, Katzenschlager, Stephan, Zimmer, Alexandra J., Seitel, Alexander, Steele, Russell, Benedetti, Andrea

论文摘要

我们考虑设定对感兴趣的连续结果的总数据荟萃分析。当结果的分布偏斜时,通常某些主要研究报告结果的样本均值和标准偏差,而其他研究则报告样本中位数以及第一个和第三四分位数以及/或最小值和最大值。为了在这种情况下进行荟萃分析,最近已经开发出了许多方法来将样本平均值和标准偏差与报告中位数的研究。然后,基于(估算的)特定于研究的样本均值和标准偏差,采用具有反变量加权的标准荟萃分析方法。在本文中,我们说明了这种常见实践如何严重低估研究内的标准误差,这导致在随机效应荟萃分析中高估了研究间的异质性。我们提出了一种直接的引导方法,以估计估计的样品平均值的标准误差。我们的仿真研究说明了提出的方法如何改善对研究内标准误差和研究间异质性的估计。此外,我们在荟萃分析中采用拟议的方法来确定COVID-19的严重过程的危险因素。

We consider the setting of an aggregate data meta-analysis of a continuous outcome of interest. When the distribution of the outcome is skewed, it is often the case that some primary studies report the sample mean and standard deviation of the outcome and other studies report the sample median along with the first and third quartiles and/or minimum and maximum values. To perform meta-analysis in this context, a number of approaches have recently been developed to impute the sample mean and standard deviation from studies reporting medians. Then, standard meta-analytic approaches with inverse-variance weighting are applied based on the (imputed) study-specific sample means and standard deviations. In this paper, we illustrate how this common practice can severely underestimate the within-study standard errors, which results in overestimation of between-study heterogeneity in random effects meta-analyses. We propose a straightforward bootstrap approach to estimate the standard errors of the imputed sample means. Our simulation study illustrates how the proposed approach can improve estimation of the within-study standard errors and between-study heterogeneity. Moreover, we apply the proposed approach in a meta-analysis to identify risk factors of a severe course of COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源