论文标题

关于反问题的深度学习方法的理论观点

Theoretical Perspectives on Deep Learning Methods in Inverse Problems

论文作者

Scarlett, Jonathan, Heckel, Reinhard, Rodrigues, Miguel R. D., Hand, Paul, Eldar, Yonina C.

论文摘要

近年来,在使用深度学习方法的使用方面取得了重大进展,例如降解,压缩感应,介入和超分辨率。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。

In recent years, there have been significant advances in the use of deep learning methods in inverse problems such as denoising, compressive sensing, inpainting, and super-resolution. While this line of works has predominantly been driven by practical algorithms and experiments, it has also given rise to a variety of intriguing theoretical problems. In this paper, we survey some of the prominent theoretical developments in this line of works, focusing in particular on generative priors, untrained neural network priors, and unfolding algorithms. In addition to summarizing existing results in these topics, we highlight several ongoing challenges and open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源