论文标题

部分可观测时空混沌系统的无模型预测

Topological Dirac Sigma Models and the Classical Master Equation

论文作者

Chatzistavrakidis, Athanasios, Jonke, Larisa, Strobl, Thomas, Šimunić, Grgur

论文摘要

我们介绍了用于拓扑迪拉克Sigma模型的古典Batalin-Vilkovisky动作的构建。后者是二维拓扑领域理论,同时概括了完全测量的Wess-Zumino-Novikov-Witten模型和Poisson Sigma模型。它们的基本结构是与由3型扭曲的确切courant代数的最大各向同性和可集成的子划线相关的狄拉克歧管。与Poisson Sigma模型相反,AKSZ结构不适用于一般Dirac Sigma模型。因此,我们遵循一种直接的方法,以确定经典作用功能的合适的BV扩展,并具有满足经典主程的防fields。特别注意目标空间协方差,这需要在狄拉克结构上引入两个与扭转的连接。

We present the construction of the classical Batalin-Vilkovisky action for topological Dirac sigma models. The latter are two-dimensional topological field theories that simultaneously generalise the completely gauged Wess-Zumino-Novikov-Witten model and the Poisson sigma model. Their underlying structure is that of Dirac manifolds associated to maximal isotropic and integrable subbundles of an exact Courant algebroid twisted by a 3-form. In contrast to the Poisson sigma model, the AKSZ construction is not applicable for the general Dirac sigma model. We therefore follow a direct approach for determining a suitable BV extension of the classical action functional with ghosts and antifields satisfying the classical master equation. Special attention is paid on target space covariance, which requires the introduction of two connections with torsion on the Dirac structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源