论文标题

部分可观测时空混沌系统的无模型预测

SImProv: Scalable Image Provenance Framework for Robust Content Attribution

论文作者

Black, Alexander, Bui, Tu, Jenni, Simon, Zhang, Zhifei, Swaminanthan, Viswanathan, Collomosse, John

论文摘要

我们提出Simprov-可扩展的图像出处框架,将查询图像匹配回到可信的原始数据库,并在查询上确定可能的操作。 Simprov由三个阶段组成:检索Top-K最相似图像的可扩展搜索阶段;一个重新排列和近乎删除的检测阶段,用于识别候选人之间的原件;最后,在查询中定位区域的操纵检测和可视化阶段可能被操纵与原始区域不同。 Simprov对在线再分配过程中通常发生的良性图像转换非常强大,例如由于噪声和恢复降解而引起的伪像,以及由于图像填充,翘曲,尺寸和形状的变化而导致的非现场转换。通过对比较器体系结构中可区分的翘曲模块的端到端训练,可以实现对实地转换的鲁棒性。我们证明了在1亿张图像的数据集上有效检索和操纵检测。

We present SImProv - a scalable image provenance framework to match a query image back to a trusted database of originals and identify possible manipulations on the query. SImProv consists of three stages: a scalable search stage for retrieving top-k most similar images; a re-ranking and near-duplicated detection stage for identifying the original among the candidates; and finally a manipulation detection and visualization stage for localizing regions within the query that may have been manipulated to differ from the original. SImProv is robust to benign image transformations that commonly occur during online redistribution, such as artifacts due to noise and recompression degradation, as well as out-of-place transformations due to image padding, warping, and changes in size and shape. Robustness towards out-of-place transformations is achieved via the end-to-end training of a differentiable warping module within the comparator architecture. We demonstrate effective retrieval and manipulation detection over a dataset of 100 million images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源