论文标题
通过Stokes现象对Fermions的重力颗粒产生的分析评估
An analytic evaluation of gravitational particle production of fermions via Stokes phenomenon
论文作者
论文摘要
在弯曲的时空中,引力颗粒产生的现象可以发生。重力产生的颗粒的丰度和能源通常是通过在时间依赖的背景度量上求解场的模式方程来计算的。为了研究通货膨胀宇宙学中的暗物质生产,这些模式方程通常是数值求解的,这在计算上是密集型的,尤其是对于快速振荡的高弹药模式。然而,这些相同的模式可以通过精确的温策尔 - 克鲁明 - 布林(EWKB)方法进行分析评估,其中重力颗粒的产生是Stokes现象的表现。这些分析技术过去曾被用来研究Spin-0玻色子的重力颗粒产生。我们扩展了早期的工作,以研究Spin-1/2和Spin-3/2费米子的重力产生。我们得出了连接矩阵的分析表达式(对扰动中的所有订单有效),该分析表达式将Bogoliubov系数跨在Stokes线上连接连接的一对简单的转折点。通过将分析近似与模式方程的直接数值整合进行比较,我们证明了出色的一致性,并强调了应用于费米子的Stokes现象形式主义的实用性。我们讨论了由于声速消失而导致的灾难性粒子产生的分析理解的含义,这对于Spin-3/2 Rarita-Schinginger场可能发生。
The phenomenon of gravitational particle production can take place for quantum fields in curved spacetime. The abundance and energy spectrum of gravitationally produced particles is typically calculated by solving the field's mode equations on a time-dependent background metric. For purposes of studying dark matter production in an inflationary cosmology, these mode equations are often solved numerically, which is computationally intensive, especially for the rapidly-oscillating high-momentum modes. However, these same modes are amenable to analytic evaluation via the Exact Wentzel-Kramers-Brillouin (EWKB) method, where gravitational particle production is a manifestation of the Stokes phenomenon. These analytic techniques have been used in the past to study gravitational particle production for spin-0 bosons. We extend the earlier work to study gravitational production of spin-1/2 and spin-3/2 fermions. We derive an analytic expression for the connection matrix (valid to all orders in perturbations) that relates Bogoliubov coefficients across a Stokes line connecting a merged pair of simple turning points. By comparing the analytic approximation with a direct numerical integration of the mode equations, we demonstrate an excellent agreement and highlight the utility of the Stokes phenomenon formalism applied to fermions. We discuss the implications for an analytic understanding of catastrophic particle production due to vanishing sound speed, which can occur for a spin-3/2 Rarita-Schwinger field.