论文标题

高斯窃听通道的正式单型包装

Formally Unimodular Packings for the Gaussian Wiretap Channel

论文作者

Bollauf, Maiara F., Lin, Hsuan-Yin, Ytrehus, Øyvind

论文摘要

本文介绍了类似晶格的包装家族,该家族概括了晶格,包括具有周期性和几何均匀性的包装。进一步研究了形式上单型(晶格状)包装的亚科。它可以看作是单模型和同源性晶格的概括,并且呈现了正式自偶联代码获得的正式构造的结构。最近,已经考虑了为高斯窃听通道编码的晶格编码。提出了一种称为保密函数的度量,以表征窃听器正确解码的可能性。目的是确定保密函数的全局最大值,称为(强)保密增益。 我们进一步将类似格子的包装应用于高斯窃听通道的coset编码,并表明,正式的单型包装家族具有与单型和同一晶格相同的保密函数行为。我们提出了一种普遍的方法,以确定结构的保密增益,一种从正式自偶偶联代码中获得的正式单型包装。从代码的重量分布中,我们为正式自偶的代码提供了必要的条件,以使其构造正式的单模型包装是秘密的,这是最佳的。最后,我们证明,与最著名的单型晶格相比,正式的单型包装/晶格可以实现更高的保密增益。

This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular and isodual lattices, and the Construction A formally unimodular packings obtained from formally self-dual codes are presented. Recently, lattice coding for the Gaussian wiretap channel has been considered. A measure called secrecy function was proposed to characterize the eavesdropper's probability of correctly decoding. The aim is to determine the global maximum value of the secrecy function, called (strong) secrecy gain. We further apply lattice-like packings to coset coding for the Gaussian wiretap channel and show that the family of formally unimodular packings shares the same secrecy function behavior as unimodular and isodual lattices. We propose a universal approach to determine the secrecy gain of a Construction A formally unimodular packing obtained from a formally self-dual code. From the weight distribution of a code, we provide a necessary condition for a formally self-dual code such that its Construction A formally unimodular packing is secrecy-optimal. Finally, we demonstrate that formally unimodular packings/lattices can achieve higher secrecy gain than the best-known unimodular lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源