论文标题
Lévy流和相关随机PDE
Lévy Flows and associated Stochastic PDEs
论文作者
论文摘要
在本文中,我们首先探讨了莱维流的某些结构特性,并使用此信息来获得强有力的解决方案,以在莱维噪声驱动的速度分布空间中为一类随机PDE提供了强大的解决方案。解决方案的独特性来自单调性不平等。这些结果扩展了BHAR(2017)对扩散案例的早期工作。
In this paper, we first explore certain structural properties of Lévy flows and use this information to obtain the existence of strong solutions to a class of Stochastic PDEs in the space of tempered distributions, driven by Lévy noise. The uniqueness of the solutions follows from Monotonicity inequality. These results extend an earlier work Bhar (2017) on the diffusion case.