论文标题

紧凑的真空间隙transmon码头:超导体表面损失的选择性和灵敏探针

Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses

论文作者

Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., Fink, J. M.

论文摘要

最先进的Transmon Qubits依赖于大型电容器,由于表面损失参与减少,因此系统地改善了它们的连贯性。但是,这种方法既增加了足迹和寄生交叉耦合,最终受到辐射损失的限制,这是将量子处理器扩展到数百万量子位的潜在障碍。在这项工作中,我们介绍了尺寸低至36 $ \ times $ 39 $ $ m $ m $^2 $的Transmon Qubits,带有$ \ gtrsim $ 100 nm宽的真空间隙电容器,它们是从商用硅仪供应器的wafers中微型加速的,并用铝蒸发了铝。在HF蒸气中释放后,我们达到了与标准共面电路兼容的面内设计中的真空参与率。高真空电场的小间隙的量子松弛时间测量值高达22 v/m,揭示了双重指数衰减,表明与长寿命的两级系统(TLS)相对强的耦合。对超导体-Vacuum表面的$> 20 dB的异常高选择性允许精确退出暴露于环境条件的氧化氧化铝的子单个photon介电损耗切线。在未来的扩展潜力方面,我们通过足迹面积达到了量子质量因子$20μ\ mathrm {s}^{ - 2} $,它与最高的$ t_1 $设备相当,依靠较大的几何形状,预计将改善较低的损失超导体,例如NBTIN,TIN或TAIN。

State-of-the-art transmon qubits rely on large capacitors which systematically improves their coherence due to reduced surface loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses - a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36$ \times $39$ μ$m$^2$ with $\gtrsim$100 nm wide vacuum gap capacitors that are micro-machined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. After the release in HF vapor we achieve a vacuum participation ratio up to 99.6\% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxation time measurements for small gaps with high vacuum electric fields of up to 22 V/m reveal a double exponential decay indicating comparably strong coupling to long-lived two-level-systems (TLS). The exceptionally high selectivity of $>$20 dB to the superconductor-vacuum surface allows to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide exposed to ambient conditions. In terms of future scaling potential we achieve a qubit quality factor by footprint area of $20 μ\mathrm{s}^{-2}$, which is on par with the highest $T_1$ devices relying on larger geometries and expected to improve substantially for lower loss superconductors like NbTiN, TiN or Ta.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源