论文标题

被动示踪剂稀释活性悬浮液中的通用泊松统计

Universal Poisson statistics of a passive tracer diffusing in dilute active suspensions

论文作者

Baule, Adrian

论文摘要

被浸入活跃的自行颗粒悬浮液(游泳者)的被动示踪剂的统计数据是,通过考虑将示踪剂与显微镜游泳者场相互作用的扰动扩张来得出的。在游泳器密度的一阶中,示踪剂统计数据完全表示为空间泊松工艺与独立的游泳器散射事件相结合,严格地将多颗粒动力学降低到两体相互作用。泊松表示在任何维度,任意相互作用的力量和游泳者动力学方面都是有效的。它特别提供了[K.中引入的有色泊松过程的分析推导。 Kanazawa等人; Nature 579,364(2020)]强调,可以通过可变变换从Markovian动力学获得这种非马克维亚过程。

The statistics of a passive tracer immersed in a suspension of active self-propelled particles (swimmers) is derived from first principles by considering a perturbative expansion of the tracer interaction with the microscopic swimmer field. To first order in the swimmer density, the tracer statistics is exactly represented as a spatial Poisson process combined with independent swimmer-tracer scattering events, rigorously reducing the multi-particle dynamics to two-body interactions. The Poisson representation is valid in any dimensions and for arbitrary interaction forces and swimmer dynamics. It provides in particular an analytical derivation of the coloured Poisson process introduced in [K. Kanazawa et al.; Nature 579, 364 (2020)] highlighting that such a non-Markovian process can be obtained from Markovian dynamics by a variable transformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源