论文标题
在Drinfeld模块化的偏向于任意等级的部分衍生物
On the partial derivatives of Drinfeld modular forms of arbitrary rank
论文作者
论文摘要
在本文中,我们获得了作用于德林菲尔德模块化形式的乘积的serre推导的类似物,该模块化形式的乘积概括了Gekeler在等级第二案例中引入的差异操作员。我们进一步引入了有限生成的代数$ \ Mathcal {M} _r $,其中包含所有Drinfeld模块化表格的完整模块组组,并在部分衍生物下显示其稳定性。
In this paper, we obtain an analogue of the Serre derivation acting on the product of spaces of Drinfeld modular forms which generalizes the differential operator introduced by Gekeler in the rank two case. We further introduce a finitely generated algebra $\mathcal{M}_r$ containing all the Drinfeld modular forms for the full modular group and show its stability under the partial derivatives.