论文标题
一般风险功能的监督学习
Supervised Learning with General Risk Functionals
论文作者
论文摘要
标准均匀收敛导致在假设类别中预期损失的概括差距。对风险敏感学习的出现需要超出预期的损失分布功能的概括保证。虽然先前的工作专门研究特定功能的均匀收敛,但我们的工作为一般的Hölder风险功能提供了统一的融合,累积分布函数(CDF)的亲密关系(CDF)的风险既需要风险的紧密度。我们建立了第一个均匀的收敛结果,用于估计损失分布的CDF,从而产生了在所有Hölder风险功能和所有假设上同时保持同时保持的保证。因此,我们获得了实现经验风险最小化的许可,我们开发了基于实用的基于梯度的方法,以最大程度地减少失真风险(广泛研究的Hölder风险子集,这些风险涵盖了频谱风险,包括平均值,风险的条件价值,累积前景理论的风险以及其他风险)并提供融合保证。在实验中,我们证明了学习过程的功效,这是在均匀收敛结果和具有深层网络的高维度的设置中。
Standard uniform convergence results bound the generalization gap of the expected loss over a hypothesis class. The emergence of risk-sensitive learning requires generalization guarantees for functionals of the loss distribution beyond the expectation. While prior works specialize in uniform convergence of particular functionals, our work provides uniform convergence for a general class of Hölder risk functionals for which the closeness in the Cumulative Distribution Function (CDF) entails closeness in risk. We establish the first uniform convergence results for estimating the CDF of the loss distribution, yielding guarantees that hold simultaneously both over all Hölder risk functionals and over all hypotheses. Thus licensed to perform empirical risk minimization, we develop practical gradient-based methods for minimizing distortion risks (widely studied subset of Hölder risks that subsumes the spectral risks, including the mean, conditional value at risk, cumulative prospect theory risks, and others) and provide convergence guarantees. In experiments, we demonstrate the efficacy of our learning procedure, both in settings where uniform convergence results hold and in high-dimensional settings with deep networks.