论文标题
bps nog log calabi-yau四倍的bps不变
BPS invariants of symplectic log Calabi-Yau fourfolds
论文作者
论文摘要
使用[12]的Fredholm设置,我们研究了零属(和更高的)相对Gromov-witten不变性剂,并具有同骨log log calabi-yau四倍的最大截图。特别是,我们给出了[23,猜想6.2]的简短证明,该证明是通过考虑通用几乎复杂的结构来获得几何计数来表达这些不变式的。我们还重新审查了[23,命题6.1]中多重覆盖贡献的定位计算,并以不同的方式重新计算了一些术语,以提供更多的细节,并说明了在目标的不稳定(或橡胶)组件中具有成分的地图的变形/阻塞空间的计算。最后,我们研究了这些不变的较高的属版本,并将一个不变的属解释为不同的贡献。
Using the Fredholm setup of [12], we study genus zero (and higher) relative Gromov-Witten invariants with maximum tangency of symplectic log Calabi-Yau fourfolds. In particular, we give a short proof of [23, Conjecture 6.2] that expresses these invariants in terms of certain integral invariants by considering generic almost complex structures to obtain a geometric count. We also revisit the localization calculation of the multiple-cover contributions in [23, Proposition 6.1] and recalculate a few terms differently to provide more details and illustrate the computation of deformation/obstruction spaces for maps that have components in a destabilizing (or rubber) component of the target. Finally, we study a higher genus version of these invariants and explain a decomposition of genus one invariants into different contributions.