论文标题
摄动量子重力的规格不变系数
Gauge-invariant coefficients in perturbative quantum gravity
论文作者
论文摘要
热核方法可用于研究量子重力的性质。我们在这里重新计算了前三个热核系数在扰动量子重力中,宇宙常数以确定文献中正确报告了哪些是哪些。它们对应于在四个维度上重新统治单环有效作用所需的反对物。可以在任意维度$ d $的情况下对它们进行评估,在这种情况下,他们仅确定出现在$ d \ geq 6 $的有效操作中的差异子集。通常,这些系数取决于量化爱因斯坦 - 希尔伯特作用时采用的量规选择。但是,它们曾经对壳的评估,即使用具有宇宙常数的爱因斯坦的野外方程。我们识别它们并将其用作检查替代方法的基准测试方法。一种这样的方法通过使用$ {\ cal n} = 4 $旋转粒子的作用来描述重力,以世界线上的四个超对称性和一组全球仪的态度为特征。此描述也用于计算量规不变系数。我们在$ d = 4 $时验证了它们的正确性,但是在与较早的基准进行比较时,请在任意$ d $上找到不匹配。我们将此结果解释为信号表明,应修改$ {\ cal n} = 4 $旋转粒子的路径积分量化。我们通过固定在$ {\ cal n} = 4 $旋转粒子的全球路径积分量化中必须使用的正确反术来执行此任务,以使其在任意维度中保持一致。
Heat kernel methods are useful for studying properties of quantum gravity. We recompute here the first three heat kernel coefficients in perturbative quantum gravity with cosmological constant to ascertain which ones are correctly reported in the literature. They correspond to the counterterms needed to renormalize the one-loop effective action in four dimensions. They may be evaluated at arbitrary dimensions $D$, in which case they identify only a subset of the divergences appearing in the effective action for $D\geq 6$. Generically, these coefficients depend on the gauge-fixing choice adopted in quantizing the Einstein-Hilbert action. However, they become gauge-invariant once evaluated on-shell, i.e. using Einstein's field equations with cosmological constant. We identify them and use them as a benchmark for checking alternative approaches to perturbative quantum gravity. One such approach describes the graviton in first-quantization through the use of the action of the ${\cal N}=4$ spinning particle, characterized by four supersymmetries on the worldline and a set of worldline gauge invariances. This description has been used for computing the gauge-invariant coefficients as well. We verify their correctness at $D=4$, but find a mismatch at arbitrary $D$ when comparing with the benchmark fixed earlier. We interpret this result as signaling that the path integral quantization of the ${\cal N}=4$ spinning particle should be amended. We perform this task by fixing the correct counterterm that must be used in the worldline path integral quantization of the ${\cal N}=4$ spinning particle to make it consistent in arbitrary dimensions.