论文标题
在$α$ -RUCL $ _3 $中的静液压(HE-GAS)压力效应的合并实验和理论研究
Combined experimental and theoretical study of hydrostatic (He-gas) pressure effects in $α$-RuCl$_3$
论文作者
论文摘要
我们报告了一项详细的实验和理论研究,介绍了静水压力对分层蜂窝抗抗磁含量$α$ -rucl $ _ {3} $的结构和磁方面的影响。在几乎理想的静液压压力条件下进行的磁化易感性测量会产生的,以$ t_n $ = 7.3 k的速度过渡到锯齿形型反铁磁性顺序可以迅速抑制至6.1 k。由于$ 104的$ 104 MP的发生,由于在压力诱导的$ 104上,伴随着强烈的结构过渡而导致的进一步抑制,这会增加压力。 Ru-Ru键,这会导致磁化率崩溃。尽管二聚化过渡是强烈的一阶,正如$χ$的不连续变化和明显的磁滞效应所反映的那样,在不同压力和磁场下的磁过渡也揭示了弱一阶转变的指示。我们将此观察结果分配给该系统中强的磁弹性耦合。在反磁制度($ t> t_n $)和二聚化之前($ p <$ 100 mpa)下,$χ$的尺寸在不同压力下的测量结果显示,随着压力,$χ$的大幅增加。这些实验观察结果与依赖压力依赖性结构和相应压力依赖性磁模型的AB-Initio密度功能理论(DFT)计算的结果一致。在第二晶体上的比较敏感性测量值,显示了两个连续的磁过渡,而不是一个,表明堆叠断层的影响。使用不同的温度压力协议,这些堆叠故障的效果可以暂时克服,从而将磁状态从多重$ t_n $转换为单$ t_n $状态。
We report a detailed experimental and theoretical study on the effect of hydrostatic pressure on the structural and magnetic aspects of the layered honeycomb antiferromagent $α$-RuCl$_{3}$. Magnetic susceptibility measurements performed under almost ideal hydrostatic-pressure conditions yield that the phase transition to zigzag-type antiferromagnetic order at $T_N$ = 7.3 K can be rapidly suppressed to about 6.1 K. A further suppression with increasing pressure is impeded due to the occurrence of a pressure-induced structural transition at $p \geq$ 104 MPa, accompanied by a strong dimerization of Ru-Ru bonds, which gives rise to a collapse of the magnetic susceptibility. Whereas the dimerization transition is strongly first order, as reflected by large discontinuous changes in $χ$ and pronounced hysteresis effects, the magnetic transition under varying pressure and magnetic field also reveals indications for a weakly first-order transition. We assign this observation to a strong magnetoelastic coupling in this system. Measurements of $χ$ under varying pressure in the paramagnetic regime ($T > T_N$) and before dimerization ($p <$ 100 MPa) reveal a considerable increase of $χ$ with pressure. These experimental observations are consistent with the results of ab-initio Density Functional Theory (DFT) calculations on the pressure-dependent structure and the corresponding pressure-dependent magnetic model. Comparative susceptibility measurements on a second crystal showing two consecutive magnetic transitions instead of one, indicating the influence of stacking faults. Using different temperature-pressure protocols the effect of these stacking faults can be temporarily overcome, transforming the magnetic state from a multiple-$T_N$ into a single-$T_N$ state.