论文标题
利用语言加速学习工具操纵
Leveraging Language for Accelerated Learning of Tool Manipulation
论文作者
论文摘要
强大而广义的工具操作需要了解不同工具的属性和提供的功能。我们研究有关工具的语言信息(例如,其几何形状,常用用途)是否可以帮助控制策略更快地适应给定任务的新工具。我们获得了自然语言中各种工具的各种描述,并使用预训练的语言模型来生成其功能表示。然后,我们执行语言条件的元学习,以学习可以有效地适应新工具的政策。我们的结果表明,将语言信息和元学习结合起来可以显着加速工具在几种操纵任务中的学习,包括推动,举重,清除和锤击。
Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.