论文标题
超过$ p $ adic polyanlui在广义的富克斯定理上
On generalized Fuchs theorem over $p$-adic polyannuli
论文作者
论文摘要
在本文中,我们研究了满足Robba条件的$ p $ adic polyannuli的有限投影差模块。 Christol和Mebkhout证明了这种差分模块的分解定理($ p $ -Adic Fuchs定理)在某些非易度量假设下,在一维$ p $ p $ ad的annuli上,将其推广到更高的维度案例。另一方面,吉德拉(Kedlaya)在一维情况下证明了$ p $ adic fuchs定理的概括。我们证明了Kedlaya在较高维度的情况下的$ P $ -ADIC FUCHS定理的广义版本。
In this paper, we study finite projective differential modules on $p$-adic polyannuli satisfying the Robba condition. Christol and Mebkhout proved the decomposition theorem (the $p$-adic Fuchs theorem) of such differential modules on one dimensional $p$-adic annuli under certain non-Liouvilleness assumption and Gachet generalized it to higher dimensional cases. On the other hand, Kedlaya proved a generalization of the $p$-adic Fuchs theorem in one dimensional case. We prove Kedlaya's generalized version of $p$-adic Fuchs theorem in higher dimensional cases.