论文标题
$ u^* = \ sqrt {uv} $
$u^* = \sqrt{uv}$
论文作者
论文摘要
本文旨在计算与美国完全就业一致的失业率$ u^*$。首先,它认为,完全就业的法律概念的最合适的经济翻译是社会效率。在这里,效率需要最大程度地减少劳动力的非生产性使用 - 无论是失业还是招募。劳动力的非生产性使用是通过求职者和空缺的数量来衡量的,$ u + v $。通过贝弗里奇曲线,空缺和求职者的数量成反比,$ uv = \ text {constant} $。在这种对称性的情况下,劳动力市场的效率是有效的,当求职者与空缺一样多($ u = v $),当空缺比求职者($ v> u $)的空缺时,劳动力市场效率低下,而当求职者比空位比空位更多的求职者($ u> v $)时,劳动力市场效率更高。因此,失业率(FERU)的全部就业率是失业率和空缺率的几何平均值:$ u^* = \ sqrt {uv} $。在1930年至2023年之间,Feru平均$ 4.1 \%$,并且非常稳定 - 它始终保持$ 2.5 \%$和$ 6.6 \%$ $。
This paper aims to compute the unemployment rate $u^*$ that is consistent with full employment in the United States. First, it argues that the most appropriate economic translation of the legal notion of full employment is social efficiency. Here efficiency requires to minimize the nonproductive use of labor -- both unemployment and recruiting. The nonproductive use of labor is measured by the number of jobseekers and vacancies, $u + v$. Through the Beveridge curve, the numbers of vacancies and jobseekers are inversely related, $uv = \text{constant}$. With such symmetry the labor market is efficient when there are as many jobseekers as vacancies ($u = v$), inefficiently tight when there are more vacancies than jobseekers ($v > u$), and inefficiently slack when there are more jobseekers than vacancies ($u > v$). Accordingly, the full-employment rate of unemployment (FERU) is the geometric average of the unemployment and vacancy rates: $u^* = \sqrt{uv}$. Between 1930 and 2023, the FERU averages $4.1\%$ and is quite stable -- it always remains between $2.5\%$ and $6.6\%$.