论文标题
Eine Bemerkung Zu Einigen $ 2 $ -Dimensionalen Komplexen,Die Im $ \ Mathbb {r}^4 $ fast-eingebettetwerdenKönnen
Eine Bemerkung zu einigen $2$-dimensionalen Komplexen, die im $\mathbb{R}^4$ fast-eingebettet werden können
论文作者
论文摘要
我们观察到,Freedman-Krushkal-Teichner在论文中构建的许多2个复合物在其论文中关于范Kampen嵌入阻塞的不完整,实际上可以浸入$ \ Mathbb {r}^4 $中,以某种方式,以某种方式使不同的细胞内部的图像脱节。换句话说,它们几乎以$ \ mathbb {r}^4 $的形式插入,而奇异性仅作为一些2个细胞的自我交叉点发生。本说明是用(不一定是现代)德语编写的。
We observe that many of the 2-complexes constructed by Freedman-Krushkal-Teichner in their paper on the incompleteness of the van Kampen embedding obstruction can actually be PL immersed in $\mathbb{R}^4$ in such a way that the images of the interiors of distinct cells are disjoint. In other words, they PL almost-embed in $\mathbb{R}^4$ with singularities occurring only as self intersections of some 2-cells. This note is written in (not necessarily modern) German.