论文标题

关于分布式平均的随机适应观点

A Random Adaptation Perspective on Distributed Averaging

论文作者

Parasnis, Rohit, Verma, Ashwin, Franceschetti, Massimo, Touri, Behrouz

论文摘要

我们提出了一个随机变体在离散时间内平均动力学的随机适应变体。我们表明,这导致了对分布式平均,意见动态和分布式学习中基本概念的新解释。也就是说,我们表明,随机链的奇迹性等同于所提出的随机适应动力学中几乎确定的(A.S.)有限时间一致性。使用此结果,我们为厄尔期链的绝对概率序列提供了一种新的解释。然后,我们将基本案例动力学修改为时间倒转的不均匀马尔可夫链,并表明在这种情况下,ergodicity等于马尔可夫链的限制分布的唯一性。最后,我们介绍并研究了Friedkin-Johnsen模型的时变随机适应版,以及基础案例动力学的排名一扰动。

We propose a random adaptation variant of time-varying distributed averaging dynamics in discrete time. We show that this leads to novel interpretations of fundamental concepts in distributed averaging, opinion dynamics, and distributed learning. Namely, we show that the ergodicity of a stochastic chain is equivalent to the almost sure (a.s.) finite-time agreement attainment in the proposed random adaptation dynamics. Using this result, we provide a new interpretation for the absolute probability sequence of an ergodic chain. We then modify the base-case dynamics into a time-reversed inhomogeneous Markov chain, and we show that in this case ergodicity is equivalent to the uniqueness of the limiting distributions of the Markov chain. Finally, we introduce and study a time-varying random adaptation version of the Friedkin-Johnsen model and a rank-one perturbation of the base-case dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源