论文标题
部分可观测时空混沌系统的无模型预测
Explicit kinematic equations for degree-4 rigid origami vertices, Euclidean and non-Euclidean
论文作者
论文摘要
我们在完全一般度折叠折纸顶点(包括欧几里得(Euclidean)(可开发)和非欧几里得病例中,我们为折叠角关系提供了新的代数方程。这些方程反过来又导致了一般可开发学位的四个案例的新颖,优雅的方程式。我们将我们的方程式与文献中的先前结果进行了比较,并提供了两个可以使用方程式的示例:在分析具有离散配置空间的正方形扭转袋中,并证明用双曲线顶点制造的新折叠桌设计具有单个折叠模式。
We derive new algebraic equations for the folding angle relationships in completely general degree-four rigid-foldable origami vertices, including both Euclidean (developable) and non-Euclidean cases. These equations in turn lead to novel, elegant equations for the general developable degree-four case. We compare our equations to previous results in the literature and provide two examples of how the equations can be used: In analyzing a family of square twist pouches with discrete configuration spaces, and for proving that a new folding table design made with hyperbolic vertices has a single folding mode.