论文标题
学会使用实验溶液数据来发展展开和无序蛋白质的结构集合
Learning to Evolve Structural Ensembles of Unfolded and Disordered Proteins Using Experimental Solution Data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We have developed a Generative Recurrent Neural Networks (GRNN) that learns the probability of the next residue torsions $X_{i+1}=\ [ϕ_{i+1},ψ_{i+1},ω_{i+1}, χ_{i+1}]$ from the previous residue in the sequence $X_i$ to generate new IDP conformations. In addition, we couple the GRNN with a Bayesian model, X-EISD, in a reinforcement learning step that biases the probability distributions of torsions to take advantage of experimental data types such as J-couplingss, NOEs and PREs. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement between structures and data improves upon existing approaches that simply reweight static structural pools for disordered proteins. Instead the GRNN "DynamICE" model learns to physically change the conformations of the underlying pool to those that better agree with experiment.