论文标题
三维马氏二型微结构的多相相结合研究
A multiphase phase-field study of three-dimensional martensitic twinned microstructures at large strains
论文作者
论文摘要
开发了一种在纳米级和大型菌株下进行压力和温度诱导的马塞西氏菌相变的热力学一致的多相场景方法。对于具有n个变体的材料,考虑了n个独立的订单参数,其中一个顺序参数描述了<-> m变换,其余的N-1独立订单参数描述了变体之间的转换。在系统的自由能中使用了非矛盾的梯度能,以解释接口的能量。此外,建议对阶参数速率与热力学驱动力的速率进行非矛盾的动力学关系。结果,得出了一个订单参数的一致耦合的金茨堡 - 兰道方程的系统。在双胞胎内的双胞胎中的晶体学解决方案是针对四方转化的。使用开发的相位场方法和基于大型的非线性有限元方法模拟双胞胎微观结构中的3D复合双胞胎。提出了晶体学解决方案与模拟结果之间的比较研究。
A thermodynamically consistent multiphase phase-field approach for stress and temperature-induced martensitic phase transformation at the nanoscale and under large strains is developed. A total of N independent order parameters are considered for materials with N variants, where one of the order parameters describes A <-> M transformations and the remaining N-1 independent order parameters describe the transformations between the variants. A non-contradictory gradient energy is used within the free energy of the system to account for the energies of the interfaces. In addition, a non-contradictory kinetic relationships for the rate of the order parameters versus thermodynamic driving forces is suggested. As a result, a system of consistent coupled Ginzburg-Landau equations for the order parameters are derived. The crystallographic solution for twins within twins is presented for the cubic to tetragonal transformations. A 3D complex twins within twins microstructure is simulated using the developed phase-field approach and a large-strain-based nonlinear finite element method. A comparative study between the crystallographic solution and the simulation result is presented.