论文标题

最佳实时招标和相关问题的凸性和二元性

Convexity and Duality in Optimum Real-time Bidding and Related Problems

论文作者

Kinnear, Ryan J., Mazumdar, Ravi R., Marbach, Peter

论文摘要

我们研究在实时拍卖市场中引起的问题,在电子商务和计算广告中很常见,在该市场中,竞标者面临计算最佳投标的问题。我们专注于合同管理问题,在该问题中,需求汇总者应遵守多种合同义务,要求他们以指定的利率获取异质类型的项目,他们将寻求以最低成本来实现。我们的主要结果表明,通过变量的转换,对于第一和第二价格拍卖,可以将此问题作为凸优化问题提出。凸度导致有效的算法来解决此问题的实例,而由此产生的二元性理论则可以接受丰富的结构和解释。此外,我们表明,用于制定此问题的变量的转换也可以用来保证其他作者研究的最佳竞标问题的凸(他们不利用凸度)。最后,我们展示了第二次价格拍卖中预期的竞标成本如何与某些交易成本正式相同,而在限制订单簿市场中提交市场订单。这一事实用于分析Markowitz投资组合问题,该问题涉及这些交易成本,并在财务和最佳竞标之间建立了有趣的联系。

We study problems arising in real-time auction markets, common in e-commerce and computational advertising, where bidders face the problem of calculating optimal bids. We focus upon a contract management problem where a demand aggregator is subject to multiple contractual obligations requiring them to acquire items of heterogeneous types at a specified rate, which they will seek to fulfill at minimum cost. Our main results show that, through a transformation of variables, this problem can be formulated as a convex optimization problem, for both first and second price auctions. Convexity results in efficient algorithms for solving instances of this problem, and the resulting duality theory admits rich structure and interpretations. Additionally, we show that the transformation of variables used to formulate this problem as a convex program can also be used to guarantee the convexity of optimal bidding problems studied by other authors (who did not leverage convexity). Finally, we show how the expected cost of bidding in second price auctions is formally identical to certain transaction costs when submitting market orders in limit order book markets. This fact is used to analyze a Markowitz portfolio problem which accounts for these transaction costs, establishing an interesting connection between finance and optimal bidding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源