论文标题

推荐系统中的智能请求策略设计

Intelligent Request Strategy Design in Recommender System

论文作者

Qian, Xufeng, Xu, Yue, Lv, Fuyu, Zhang, Shengyu, Jiang, Ziwen, Liu, Qingwen, Zeng, Xiaoyi, Chua, Tat-Seng, Wu, Fei

论文摘要

瀑布推荐系统(RS)是移动应用程序中RS的流行形式,是推荐的项目流,这些项目由连续页面组成,可以通过滚动浏览。在Waterfall RS中,当用户完成浏览页面时,Edge(例如,手机)将向Cloud Server发送请求,以获取新的建议页面,称为分页请求机制。 RSS通常将大量项目放入一个页面中,以减少众多分页请求中的过度资源消耗,但是,这将降低RSS根据用户的实时兴趣及时续订建议的能力,并带来差的用户体验。直观地,在页面内插入其他请求以以更高的频率更新建议可以减轻问题。但是,以前的尝试,包括非自适应策略(例如,统一插入请求)最终会导致资源过度消费。为此,我们设想了一项名为智能请求策略设计(IRSD)的Edge Intelligence的新学习任务。它旨在通过根据用户的实时意图确定请求插入的适当情况来提高瀑布RSS的有效性。此外,我们提出了一个新的自适应请求插入策略的新范式,名为基于Uplift的On-Enge Smart请求框架(AdareQuest)。 Adarequest 1)通过将用户的实时行为与基于基于注意力的神经网络相匹配的历史兴趣来捕获用户意图的动态变化。 2)估计根据因果推理插入的请求带来的用户购买的反事实提升。 3)通过在在线资源约束下最大化实用程序功能来确定最终请求插入策略。我们在离线数据集和在线A/B测试上进行了广泛的实验,以验证Adarequest的有效性。

Waterfall Recommender System (RS), a popular form of RS in mobile applications, is a stream of recommended items consisting of successive pages that can be browsed by scrolling. In waterfall RS, when a user finishes browsing a page, the edge (e.g., mobile phones) would send a request to the cloud server to get a new page of recommendations, known as the paging request mechanism. RSs typically put a large number of items into one page to reduce excessive resource consumption from numerous paging requests, which, however, would diminish the RSs' ability to timely renew the recommendations according to users' real-time interest and lead to a poor user experience. Intuitively, inserting additional requests inside pages to update the recommendations with a higher frequency can alleviate the problem. However, previous attempts, including only non-adaptive strategies (e.g., insert requests uniformly), would eventually lead to resource overconsumption. To this end, we envision a new learning task of edge intelligence named Intelligent Request Strategy Design (IRSD). It aims to improve the effectiveness of waterfall RSs by determining the appropriate occasions of request insertion based on users' real-time intention. Moreover, we propose a new paradigm of adaptive request insertion strategy named Uplift-based On-edge Smart Request Framework (AdaRequest). AdaRequest 1) captures the dynamic change of users' intentions by matching their real-time behaviors with their historical interests based on attention-based neural networks. 2) estimates the counterfactual uplift of user purchase brought by an inserted request based on causal inference. 3) determines the final request insertion strategy by maximizing the utility function under online resource constraints. We conduct extensive experiments on both offline dataset and online A/B test to verify the effectiveness of AdaRequest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源