论文标题
张量向量系统中的分裂合并过渡,以$ n $限制
Splitting-merging transitions in tensor-vectors systems in exact large-$N$ limits
论文作者
论文摘要
矩阵模型具有相变,其中变量的分布像毛 - 宽大的跃迁一样在拓扑上变化。在最近的一项研究中,通过数值模拟观察到在张量向量系统中观察到动态变量的分布的类似分裂合并行为。在本文中,我们精确地研究了系统,其中分布是离散的配置集,而不是连续的。我们找到了固定张量的一阶相变,以及随机张量的一阶和二阶相变,其特征是复制对称性的破坏模式。该系统至少在三个不同的主题中引起了人们的关注:分裂动力学在量子重力张量模型中的经典空间中起着至关重要的作用。分裂动力学会自动检测到数据分析中张量秩分解中的张量。该系统为带有新的非平凡参数的自旋眼镜的球形$ p $ spin模型提供了一种变体。我们从这些角度讨论结果的一些含义。将结果与一些数值模拟进行比较,以检查大型$ n $收敛性和分析中的假设。
Matrix models have phase transitions in which distributions of variables change topologically like the Gross-Witten-Wadia transition. In a recent study, similar splitting-merging behavior of distributions of dynamical variables was observed in a tensor-vectors system by numerical simulations. In this paper, we study the system exactly in some large-$N$ limits, in which the distributions are discrete sets of configurations rather than continuous. We find cascades of first-order phase transitions for fixed tensors, and first- and second-order phase transitions for random tensors, being characterized by breaking patterns of replica symmetries. The system is of interest across three different subjects at least: The splitting dynamics plays essential roles in emergence of classical spacetimes in a tensor model of quantum gravity; The splitting dynamics automatically detects the rank of a tensor in the tensor rank decomposition in data analysis; The system provides a variant of the spherical $p$-spin model for spin glasses with a new non-trivial parameter. We discuss some implications of the results from these perspectives. The results are compared with some numerical simulations to check the large-$N$ convergence and the assumptions made in the analysis.