论文标题

轨迹编码动词含义吗?

Do Trajectories Encode Verb Meaning?

论文作者

Ebert, Dylan, Sun, Chen, Pavlick, Ellie

论文摘要

分布模型从文本中学习单词的表示,但由于缺乏基础或将文本与非语言世界的联系而受到批评。扎根的语言模型在学习将名词和形容词(形容词)通过图像和视频连接到世界上的混凝土类别取得了成功,但可能会难以将动词本身的含义与通常发生的上下文隔离。在本文中,我们研究了自然编码动词语义的轨迹(即物体的位置和旋转)的程度。我们构建一个程序生成的代理 - 对象相互作用数据集,获取该数据中发生的动词的人体注释,并比较给定轨迹的几种表示学习方法。我们发现,轨迹与某些动词(例如秋季)相关,并且通过自我监督预处理的额外抽象可以进一步捕获动词含义的细微差异(例如,Roll vs. slide)。

Distributional models learn representations of words from text, but are criticized for their lack of grounding, or the linking of text to the non-linguistic world. Grounded language models have had success in learning to connect concrete categories like nouns and adjectives to the world via images and videos, but can struggle to isolate the meaning of the verbs themselves from the context in which they typically occur. In this paper, we investigate the extent to which trajectories (i.e. the position and rotation of objects over time) naturally encode verb semantics. We build a procedurally generated agent-object-interaction dataset, obtain human annotations for the verbs that occur in this data, and compare several methods for representation learning given the trajectories. We find that trajectories correlate as-is with some verbs (e.g., fall), and that additional abstraction via self-supervised pretraining can further capture nuanced differences in verb meaning (e.g., roll vs. slide).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源