论文标题

在差分传播率和时间惩罚下缓解错误信息

Misinformation Mitigation under Differential Propagation Rates and Temporal Penalties

论文作者

Simpson, Michael, Hashemi, Farnoosh, Lakshmanan, Laks V. S.

论文摘要

我们提出了一个信息传播模型,该模型捕获了在假新闻传播的动态中已经很好地观察到的重要时间方面,与真理的扩散相反。该模型说明了真相和错误信息的差异传播率以及用户反应时间。我们研究了\ textit {误解的缓解}问题的时间敏感变体,其中要选择$ k $种子来激活真相活动,以最大程度地减少采用通过社交网络传播的错误信息的用户数量。我们表明,由此产生的目标是非管状的,并通过定义下限和下边界功能来采用夹层技术,从而提供数据依赖性保证。为了实现反向采样框架的使用,我们引入了反向可达性集的加权版本,该版本捕获相关的差分传播率,并在加权设置覆盖率概率和减轻夹层功能之间建立关键等效性。此外,我们提出了一个离线反向采样框架,该框架为我们的边界函数提供$(1-1/e -e -ε)$ - 近似解决方案,并引入了一种重要的采样技术来降低解决方案的样本复杂性。最后,我们展示了我们的框架如何为问题提供任何时间解决方案。五个数据集的实验表明,我们的方法表现优于先前的方法,并且在模型参数中对不确定性是可靠的。

We propose an information propagation model that captures important temporal aspects that have been well observed in the dynamics of fake news diffusion, in contrast with the diffusion of truth. The model accounts for differential propagation rates of truth and misinformation and for user reaction times. We study a time-sensitive variant of the \textit{misinformation mitigation} problem, where $k$ seeds are to be selected to activate a truth campaign so as to minimize the number of users that adopt misinformation propagating through a social network. We show that the resulting objective is non-submodular and employ a sandwiching technique by defining submodular upper and lower bounding functions, providing data-dependent guarantees. In order to enable the use of a reverse sampling framework, we introduce a weighted version of reverse reachability sets that captures the associated differential propagation rates and establish a key equivalence between weighted set coverage probabilities and mitigation with respect to the sandwiching functions. Further, we propose an offline reverse sampling framework that provides $(1 - 1/e - ε)$-approximate solutions to our bounding functions and introduce an importance sampling technique to reduce the sample complexity of our solution. Finally, we show how our framework can provide an anytime solution to the problem. Experiments over five datasets show that our approach outperforms previous approaches and is robust to uncertainty in the model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源