论文标题

使用具有MRI神经影像学的人工智能方法检测自动自闭症谱系障碍障碍:评论

Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review

论文作者

Moridian, Parisa, Ghassemi, Navid, Jafari, Mahboobeh, Salloum-Asfar, Salam, Sadeghi, Delaram, Khodatars, Marjane, Shoeibi, Afshin, Khosravi, Abbas, Ling, Sai Ho, Subasi, Abdulhamit, Alizadehsani, Roohallah, Gorriz, Juan M., Abdulla, Sara A, Acharya, U. Rajendra

论文摘要

自闭症谱系障碍(ASD)是一种脑部疾病,其特征是童年时期出现的各种体征和症状。 ASD还与受影响个体的沟通缺陷和重复行为有关。已经开发了各种ASD检测方法,包括神经影像学和心理测试。在这些方法中,磁共振成像(MRI)成像方式对医生至关重要。临床医生依靠MRI方式准确诊断ASD。 MRI模态是非侵入性方法,包括功能(fMRI)和结构(SMRI)神经影像学方法。但是,用fMRI和SMRI诊断为专家的ASD通常是费力且耗时的。因此,已经开发了基于人工智能(AI)的几种计算机辅助设计系统(CAD)来协助专家医生。传统的机器学习(ML)和深度学习(DL)是用于诊断ASD的最受欢迎的AI方案。这项研究旨在使用AI回顾对ASD的自动检测。我们回顾了使用ML技术开发的几个CAD,以使用MRI模式自动诊断ASD。在使用DL技术来开发ASD自动诊断模型方面的工作非常有限。补充附录中提供了使用DL开发的研究摘要。然后,详细描述了使用MRI和AI技术在自动诊断ASD的自动诊断期间遇到的挑战。此外,讨论了使用ML和DL自动诊断ASD的研究的图形比较。我们建议使用AI技术和MRI神经影像学检测ASD的未来方法。

Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源