论文标题

使用风格指标的缺陷预测

Defect Prediction Using Stylistic Metrics

论文作者

Yasir, Rafed Muhammad, Kabir, Ahmedul

论文摘要

缺陷预测是最受欢迎的研究主题之一,因为它有可能最大程度地减少软件质量保证工作。现有方法已经从复杂性和开发者指标等各个角度检查了缺陷预测。但是,这些都没有考虑用于缺陷预测的编程样式。本文旨在分析风格指标对项目内部和交叉对象缺陷预测的影响。为了预测,使用了4种广泛使用的机器学习算法,即幼稚的贝叶斯,支持向量机,决策树和逻辑回归。该实验是在5个流行的开源项目的14个版本上进行的。检查F1,精度和召回以评估结果。结果表明,风格指标是缺陷的良好预测指标。

Defect prediction is one of the most popular research topics due to its potential to minimize software quality assurance efforts. Existing approaches have examined defect prediction from various perspectives such as complexity and developer metrics. However, none of these consider programming style for defect prediction. This paper aims at analyzing the impact of stylistic metrics on both within-project and crossproject defect prediction. For prediction, 4 widely used machine learning algorithms namely Naive Bayes, Support Vector Machine, Decision Tree and Logistic Regression are used. The experiment is conducted on 14 releases of 5 popular, open source projects. F1, Precision and Recall are inspected to evaluate the results. Results reveal that stylistic metrics are a good predictor of defects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源