论文标题

Uniud-fbk-ub-unibz提交给Epic-kitchens-100多企业检索挑战2022

UniUD-FBK-UB-UniBZ Submission to the EPIC-Kitchens-100 Multi-Instance Retrieval Challenge 2022

论文作者

Falcon, Alex, Serra, Giuseppe, Escalera, Sergio, Lanz, Oswald

论文摘要

本报告介绍了我们提交给Epic-Kitchens-100多实体检索挑战2022的技术细节。为了参与挑战,我们设计了一个合奏,该合奏由不同的模型组成,该模型由两个最近开发的相关性授权版本的广泛使用的三胞胎损失的训练。我们的提交在公共排行榜上可见,平均得分为61.02%NDCG和49.77%的地图。

This report presents the technical details of our submission to the EPIC-Kitchens-100 Multi-Instance Retrieval Challenge 2022. To participate in the challenge, we designed an ensemble consisting of different models trained with two recently developed relevance-augmented versions of the widely used triplet loss. Our submission, visible on the public leaderboard, obtains an average score of 61.02% nDCG and 49.77% mAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源