论文标题

学习通过身体动态估计和完善流体运动

Learning to Estimate and Refine Fluid Motion with Physical Dynamics

论文作者

Zhang, Mingrui, Wang, Jianhong, Tlhomole, James, Piggott, Matthew D.

论文摘要

直接从图像中提取流体运动的信息具有挑战性。流体流量代表一个由Navier-Stokes方程控制的复杂动态系统。一般的光流方法通常是为刚体运动设计的,因此如果直接应用于流体运动估计,则努力挣扎。此外,光流方法仅专注于两个连续的帧而不利用历史时间信息,而流体运动(速度场)可以视为受时间依赖性偏微分方程(PDE)约束的连续轨迹。这种差异有可能引起身体上不一致的估计。在这里,我们提出了一种基于学习的基于学习的预测校正方案,以进行流体流量估计。首先由PDE受限的光流预测器给出估计值,然后由基于物理的校正器来完善。与现有基于基于学习的学习方法相比,所提出的方法的表现优于光流方法,并且显示出竞争性的结果。此外,所提出的方法可以推广到复杂的现实世界情景,在这种情况下,地面真相信息实际上是不可知的。最后,实验表明,物理校正器可以通过模仿通常在流体动力学模拟中使用的操作员分裂方法来完善流量估计。

Extracting information on fluid motion directly from images is challenging. Fluid flow represents a complex dynamic system governed by the Navier-Stokes equations. General optical flow methods are typically designed for rigid body motion, and thus struggle if applied to fluid motion estimation directly. Further, optical flow methods only focus on two consecutive frames without utilising historical temporal information, while the fluid motion (velocity field) can be considered a continuous trajectory constrained by time-dependent partial differential equations (PDEs). This discrepancy has the potential to induce physically inconsistent estimations. Here we propose an unsupervised learning based prediction-correction scheme for fluid flow estimation. An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector. The proposed approach outperforms optical flow methods and shows competitive results compared to existing supervised learning based methods on a benchmark dataset. Furthermore, the proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable. Finally, experiments demonstrate that the physical corrector can refine flow estimates by mimicking the operator splitting method commonly utilised in fluid dynamical simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源