论文标题
热调制无限尺寸赫斯顿模型及其数值近似
The heat modulated infinite dimensional Heston model and its numerical approximation
论文作者
论文摘要
引入和分析了热调制无限尺寸heston(Heidih)模型及其数值近似。该模型属于无限维度Heston随机波动率模型(F.E. Benth,I.C。Simonsen '18)的一般框架,该模型是为远期合同的定价而引入的。 Heidih模型由一维随机对流方程以及随机波动率过程组成,该过程定义为希尔伯特空间值ornstein-uhlenbeck的张量产物的Cholesky型分解,这是对真实半个线路的随机热方程的温和方程的解决方案。对流方程是由独立的时空高斯工艺驱动的,这些高斯过程是白色的,在太空中有色,后者的协方差结构由两个不同的内核表达。首先,给出了一类重量平台的内核,根据该核的规律性结果,为分数Sobolev空间中的Heidih模型提供了规律性结果。特别是,该课程包括加权Matérn内核。其次,考虑模型的数值近似。对于有限差分方案,在空间和时间上刻有误差分解公式已被证明。对于特殊情况,当将其与随机热方程的完全离散的有限元近似结合使用时,将获得基本尖锐的收敛速率。该分析考虑了本地化误差,空间有限元离散误差以及由于空间中噪声的噪声而引起的误差。分析中获得的速率高于使用标准Sobolev嵌入技术获得的速率。数值模拟说明了结果。
The HEat modulated Infinite DImensional Heston (HEIDIH) model and its numerical approximation are introduced and analyzed. This model falls into the general framework of infinite dimensional Heston stochastic volatility models of (F.E. Benth, I.C. Simonsen '18), introduced for the pricing of forward contracts. The HEIDIH model consists of a one-dimensional stochastic advection equation coupled with a stochastic volatility process, defined as a Cholesky-type decomposition of the tensor product of a Hilbert-space valued Ornstein-Uhlenbeck process, the mild solution to the stochastic heat equation on the real half-line. The advection and heat equations are driven by independent space-time Gaussian processes which are white in time and colored in space, with the latter covariance structure expressed by two different kernels. First, a class of weight-stationary kernels are given, under which regularity results for the HEIDIH model in fractional Sobolev spaces are formulated. In particular, the class includes weighted Matérn kernels. Second, numerical approximation of the model is considered. An error decomposition formula, pointwise in space and time, for a finite-difference scheme is proven. For a special case, essentially sharp convergence rates are obtained when this is combined with a fully discrete finite element approximation of the stochastic heat equation. The analysis takes into account a localization error, a pointwise-in-space finite element discretization error and an error stemming from the noise being sampled pointwise in space. The rates obtained in the analysis are higher than what would be obtained using a standard Sobolev embedding technique. Numerical simulations illustrate the results.