论文标题

用于加密互联网和恶意流量分类的开源框架

Open-Source Framework for Encrypted Internet and Malicious Traffic Classification

论文作者

Bader, Ofek, Lichy, Adi, Dvir, Amit, Dubin, Ran, Hajaj, Chen

论文摘要

互联网流量分类在网络可见性,服务质量(QoS),入侵检测,经验质量(QOE)和交通趋势分析中起关键作用。为了提高隐私,完整性,机密性和协议混淆,当前的流量基于加密协议,例如SSL/TLS。随着文献中机器学习(ML)和深度学习(DL)模型的使用增加,由于缺乏标准化的框架,不同模型和方法之间的比较变得繁琐且困难。在本文中,我们提出了一个名为OSF-EIMTC的开源框架,该框架可以提供学习过程的完整管道。从著名的数据集到提取新的众所周知的功能,它提供了知名的ML和DL模型(来自交通分类文献)以及评估的实现。这样的框架可以促进交通分类域中的研究,从而更具重复性,可重复性,易于执行,并可以更准确地比较知名和新颖的功能和模型。作为我们框架评估的一部分,我们演示了可以使用多个数据集,模型和功能集的各种情况。我们展示了公开可用数据集的分析,并邀请社区使用OSF-EIMTC参与我们的公开挑战。

Internet traffic classification plays a key role in network visibility, Quality of Services (QoS), intrusion detection, Quality of Experience (QoE) and traffic-trend analyses. In order to improve privacy, integrity, confidentiality, and protocol obfuscation, the current traffic is based on encryption protocols, e.g., SSL/TLS. With the increased use of Machine-Learning (ML) and Deep-Learning (DL) models in the literature, comparison between different models and methods has become cumbersome and difficult due to a lack of a standardized framework. In this paper, we propose an open-source framework, named OSF-EIMTC, which can provide the full pipeline of the learning process. From the well-known datasets to extracting new and well-known features, it provides implementations of well-known ML and DL models (from the traffic classification literature) as well as evaluations. Such a framework can facilitate research in traffic classification domains, so that it will be more repeatable, reproducible, easier to execute, and will allow a more accurate comparison of well-known and novel features and models. As part of our framework evaluation, we demonstrate a variety of cases where the framework can be of use, utilizing multiple datasets, models, and feature sets. We show analyses of publicly available datasets and invite the community to participate in our open challenges using the OSF-EIMTC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源