论文标题

Unruh-Dewitt检测器中的重力波信号

Gravitational wave signals in an Unruh-DeWitt detector

论文作者

Prokopec, Tomislav

论文摘要

我们首先将大规模的标量传播器概括为在最近在参考文献中获得的Minkowski空间传播的平面引力波。 [1]。然后,我们使用此繁殖器来研究自由掉落的Unruh-Dewitt检测器对重力波背景的响应。我们发现,自由下降的检测器完全取消了由重力波引起的不变距离变形的影响,因此唯一的效果来自标量场真空波动的平均大小的增加,其起源可以追溯到引力波的变化。该作用源自脱壳检测器轨迹上的传播之间的量子干扰,该轨迹探测了由重力波的重力反应引起的不同空间重力电位,因此纯粹是量子。当对经典的重力插入进行重新亮起时,引力波会在复杂的$Δτ$ - 平面的假想轴上产生切割(其中$Δτ=τ-τ-τ'$表示适当时间的差异),并且这些切口的不连续性是导致无效转变的连续性转变,导致无效的eTector造成了ununuh-dewitt-dewitt-detecter。毫不奇怪,我们发现检测器的过渡速率因能量增加和标量场的质量而被指数抑制。然而,令人惊讶的是,过渡速率是重力场应变的非分析功能。这意味着,无论重力场振幅有多小,重力场应变的力量扩展都无法很好地近似探测器的过渡速率。

We firstly generalize the massive scalar propagator for planar gravitational waves propagating on Minkowski space obtained recently in Ref. [1]. We then use this propagator to study the response of a freely falling Unruh-DeWitt detector to a gravitational wave background. We find that a freely falling detector completely cancels the effect of the deformation of the invariant distance induced by the gravitational waves, such that the only effect comes from an increased average size of scalar field vacuum fluctuations, the origin of which can be traced back to the change of the surface in which the gravitational waves fluctuate. The effect originates from the quantum interference between propagation on off-shell detector's trajectories which probe different spatial gravitational potential induced by the gravitational backreaction from gravitational waves, and it is therefore purely quantum. When resummed over classical graviton insertions, gravitational waves generate cuts on the imaginary axis of the complex $Δτ$-plane (where $Δτ= τ-τ'$ denotes the difference of proper times), and the discontinuity across these cuts is responsible for a continuum of energy transitions induced in the Unruh-DeWitt detector. Not surprisingly, we find that the detector's transition rate is exponentially suppressed with increasing energy and the mass of the scalar field. What is surprising, however, is that the transition rate is a non-analytic function of the gravitational field strain. This means that, no matter how small is the gravitational field amplitude, expanding in powers of the gravitational field strain cannot approximate well the detector's transition rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源