论文标题

学习最佳流量以进行非平衡重要性抽样

Learning Optimal Flows for Non-Equilibrium Importance Sampling

论文作者

Cao, Yu, Vanden-Eijnden, Eric

论文摘要

计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单基础分布中生成样品的样品,通过速度场产生的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是具有零变化的完美估计器的一般条件。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络并将其训练为零方差最佳。这些结果在基准示例上进行了数字说明(尺寸高达$ 10 $),在训练速度场之后,NEIS估计器的差异降低了$ 6 $ 6 $的数量级,而不是香草估计器的差异。我们还将NEIS的表现与Neal退火重要性采样(AIS)进行了比较。

Many applications in computational sciences and statistical inference require the computation of expectations with respect to complex high-dimensional distributions with unknown normalization constants, as well as the estimation of these constants. Here we develop a method to perform these calculations based on generating samples from a simple base distribution, transporting them by the flow generated by a velocity field, and performing averages along these flowlines. This non-equilibrium importance sampling (NEIS) strategy is straightforward to implement and can be used for calculations with arbitrary target distributions. On the theory side, we discuss how to tailor the velocity field to the target and establish general conditions under which the proposed estimator is a perfect estimator with zero-variance. We also draw connections between NEIS and approaches based on mapping a base distribution onto a target via a transport map. On the computational side, we show how to use deep learning to represent the velocity field by a neural network and train it towards the zero variance optimum. These results are illustrated numerically on benchmark examples (with dimension up to $10$), where after training the velocity field, the variance of the NEIS estimator is reduced by up to $6$ orders of magnitude than that of a vanilla estimator. We also compare the performances of NEIS with those of Neal's annealed importance sampling (AIS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源