论文标题
优化非线性强制振荡器的工作环技术
Work-loop techniques for optimising nonlinear forced oscillators
论文作者
论文摘要
线性和非线性谐振状态可能具有限制性:它们在特定的(例如简单谐波)波形下以频率和/或弹性为特定的离散状态。在强制振荡器中,这种限制性是系统设计和控制调制的障碍:改变系统弹性或调节响应,都必须蒙受效率的惩罚。在这项工作中,我们描述了一种绕过这一障碍的方法。使用新颖的工作环技术,我们证明并说明了某些类别的共振优化问题如何导致非唯一的解决方案。在结构优化的环境中,多种能量弹性的弹性不是唯一的。在最佳控制上下文中,多种能量最佳的频率不是唯一的。对于这些非唯一最佳选择类别的类别,我们可以得出定义最佳区域的简单边界。这些新颖的理论结果对一系列仿生推进系统的设计和控制具有实际意义,包括拍打翼微型空气 - 使用这些结果,我们可以生成有效的机翼调制形式进行飞行控制。
Linear and nonlinear resonant states can be restrictive: they exist at particular discrete states in frequency and/or elasticity, under particular (e.g., simple-harmonic) waveforms. In forced oscillators, this restrictiveness is an obstacle to system design and control modulation: altering the system elasticity, or modulating the response, would both appear to necessarily incur a penalty to efficiency. In this work, we describe an approach for bypassing this obstacle. Using novel work-loop techniques, we prove and illustrate how certain classes of resonant optimisation problem lead to non-unique solutions. In a structural optimisation context, several categories of energetically-optimal elasticity are non-unique. In an optimal control context, several categories of energetically-optimal frequency are non-unique. For these classes of non-unique optimum, we can derive simple bounds defining the optimal region. These novel theoretical results have practical implications for the design and control of a range of biomimetic propulsion systems, including flapping-wing micro-air-vehicles: using these results, we can generate efficient forms of wingbeat modulation for flight control.