论文标题
量子热力学不确定性关系,普遍的电流波动和非平衡波动散失不平等现象
Quantum Thermodynamic Uncertainty Relations, Generalized Current Fluctuations and Nonequilibrium Fluctuation-Dissipation Inequalities
论文作者
论文摘要
热力学不确定性关系(TURS)代表了我们的工具箱中少数几个基于基本和基本关系的关系之一,用于应对非平衡系统的热力学。一种tur的一种形式量化了确定非平衡电流的一定精度的最低能量成本。在我们的研究计划的初始阶段,我们的目标是使用线性开放量子系统的微物理学模型提供TUR的量子理论基础,并可以在其中获得精确的解决方案。在论文[dong \ textit {et al。},熵{\ bf 24},870(2022)]中,我们展示了在完全非平衡条件下Turs植根于量子不确定性原理和波动 - 散失不等式(FDI)。在本文中,我们将注意力从量子基础转移到热表现。在量子布朗尼运动研究中,使用微观模型用于浴的光谱密度,我们在高温下有效的量子非平衡动力学中制定了``热''FDI。这将我们在这里得出的量子TUR带到了经典域,因此可以与一些流行的TURS进行比较。在以热能为主的方案中,我们的FDI提供了更好地估计热力学量的不确定性。我们的处理包括从环境到系统的全面反作用。作为广义电流的具体示例,我们检查了进入布朗粒子的能量通量或动力,并找到相应的电流相关性的精确表达。在这样做时,我们表明,浴室的统计特性和系统+浴室相互作用的因果关系都被热力学量所遵守的TURS。
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions. In paper [Dong \textit{et al.}, Entropy {\bf 24}, 870 (2022)], we show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions. In this paper, we shift our attention from the quantum basis to the thermal manifests. Using a microscopic model for the bath's spectral density in quantum Brownian motion studies, we formulate a ``thermal'' FDI in the quantum nonequilibrium dynamics which is valid at high temperatures. This brings the quantum TURs we derive here to the classical domain and can thus be compared with some popular forms of TURs. In the thermal-energy-dominated regimes, our FDIs provide better estimates on the uncertainty of thermodynamic quantities. Our treatment includes full back-action from the environment onto the system. As a concrete example of the generalized current, we examine the energy flux or power entering the Brownian particle and find an exact expression of the corresponding current-current correlations. In so doing, we show that the statistical properties of the bath and the causality of the system+bath interaction both enter into the TURs obeyed by the thermodynamic quantities.