论文标题
TATE正常形式的Hasse不变$ e_7 $和fricke group $γ_0^*(7)$的Supersingular多项式
The Hasse invariant of the Tate normal form $E_7$ and the supersingular polynomial for the Fricke group $Γ_0^*(7)$
论文作者
论文摘要
证明了一个公式,即在$ \ mathbb {f} _l $上超过$ \ mathbb {f} _l $的线性因素和不可约分因素的数量,hasse不变性$ \ hat h_ {7,l}(a)tate normal formal $ e_7(a)$ e_7(a)的订单$ 7 $,作为point $ 7 $的点数,作为一个unimalial $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ k = \ mathbb {q}(\ sqrt {-l})$。指出了构想公式的$ \ h_ {7,l}(a)的二次和六因素的数量。与Fricke组$γ_0^*(7)$相对应的superingular多项式$ ss_l^{(7*)}(x)$。
A formula is proved for the number of linear factors and irreducible cubic factors over $\mathbb{F}_l$ of the Hasse invariant $\hat H_{7,l}(a)$ of the Tate normal form $E_7(a)$ for a point of order $7$, as a polynomial in the parameter $a$, in terms of the class number of the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-l})$. Conjectural formulas are stated for the numbers of quadratic and sextic factors of $\hat H_{7,l}(a)$ of certain specific forms in terms of the class number of $\mathbb{Q}(\sqrt{-7l})$, which are shown to imply a recent conjecture of Nakaya on the number of linear factors over $\mathbb{F}_l$ of the supersingular polynomial $ss_l^{(7*)}(X)$ corresponding to the Fricke group $Γ_0^*(7)$.