论文标题

在晶格上的有限群体量规理论,作为哈密顿系统的限制性

Finite-group gauge theories on lattices as Hamiltonian systems with constraints

论文作者

de Resende, M. F. Araujo

论文摘要

在这项工作中,我们介绍了仪表理论的简短但有见地的概述,通过使用有限量规组,在$ n $维定的晶格上定义了该量理论,以说明如何将它们解释为具有限制的汉密尔顿系统,类似于与经典(连续)(连续)量规(现场)理论发生的情况。由于通常在讨论/介绍晶格仪理论概念的文献中不探讨这种解释,但是最近的一些作品是在探索哈密顿模型以支持某种量子计算,因此我们将此解释用于例如,例如,对这些模型的简短几何观点:Kitaev量子量子量子量。

In this work, we present a brief but insightful overview of the gauge theories, which are defined on $ n $-dimensional lattices by using finite gauge groups, in order to show how they can be interpreted as a Hamiltonian system with constraints, analogous to what happens with the classical (continuous) gauge (field) theories. As this interpretation is not usually explored in the literature that discusses/introduces the concept of lattice gauge theory, but some recent works have been exploring Hamiltonian models in order to support some kind of quantum computation, we use this interpretation to, for example, present a brief geometric view of one class of these models: the Kitaev Quantum Double Models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源