论文标题
$ c^*$ - 代数的基本交换cartan子代理
Essential commutative Cartan subalgebras of $C^*$-algebras
论文作者
论文摘要
我们定义了$ c^*$ - 代数的基本交通型彩色对雷诺的定义,并表明该对由Kwaśniewski和Meyer定义的Essential Twisted Groupoid $ C^*$ - 代数给出。我们表明,潜在的扭曲的类固醇是有效的,并且在有效的类固醇中,曲折的同构是独一无二的,从而引起了基本的交换cartan对。我们还表明,对于产生这种对的有效类固醇的扭曲,扭曲的自动形态群是通过显式结构的诱导基本cartan对的自动形态组的同构。
We define essential commutative Cartan pairs of $C^*$-algebras generalising the definition of Renault and show that such pairs are given by essential twisted groupoid $C^*$-algebras as defined by Kwaśniewski and Meyer. We show that the underlying twisted groupoid is effective, and is unique up to isomorphism among twists over effective groupoids giving rise to the essential commutative Cartan pair. We also show that for twists over effective groupoids giving rise to such pairs, the automorphism group of the twist is isomorphic to the automorphism group of the induced essential Cartan pair via explicit constructions.