论文标题

具有不合格接口的域分解的降低订单模型

A reduced order model for domain decompositions with non-conforming interfaces

论文作者

Zappon, Elena, Manzoni, Andrea, Gervasio, Paola, Quarteroni, Alfio

论文摘要

在本文中,我们提出了一种使用域分解(DD)亚架构方法解决的双向Dirichlet-Neumann参数耦合问题的降低订单建模策略。我们分别将原始的耦合差分问题分别分别为具有Dirichlet和Neumann界面条件的两个子问题。在通过有限元法离散化之后,通过两个子问题之间的dirichlet-neumann迭代求解了全阶模型(FOM),直到达到界面收敛为止。然后,我们应用还原的基准(RB)方法来获得每个子问题的溶液的低维表示。此外,我们在接口级别应用离散的经验插值方法(DEIM),以实现实施的DD技术的完全降低的表示。为了处理不合格的FE接口离散化,我们采用了internodes方法与接口Deim还原相结合。然后,通过在两个还原阶的子问题之间进行亚识别,直到近似高保真界面解决方案的收敛性来解决还原阶模型(ROM)。在不符合Fe接口的情况下,在稳定和不稳定的耦合问题上,ROM方案在数值上都得到了验证。

In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems with Dirichlet and Neumann interface conditions, respectively. After discretization by, e.g., the finite element method, the full-order model (FOM) is solved by Dirichlet-Neumann iterations between the two sub-problems until interface convergence is reached. We then apply the reduced basis (RB) method to obtain a low-dimensional representation of the solution of each sub-problem. Furthermore, we apply the discrete empirical interpolation method (DEIM) at the interface level to achieve a fully reduced-order representation of the DD techniques implemented. To deal with non-conforming FE interface discretizations, we employ the INTERNODES method combined with the interface DEIM reduction. The reduced-order model (ROM) is then solved by sub-iterating between the two reduced-order sub-problems until the convergence of the approximated high-fidelity interface solutions. The ROM scheme is numerically verified on both steady and unsteady coupled problems, in the case of non-conforming FE interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源