论文标题
高效且柔性的sublabel精确能量最小化
Efficient and Flexible Sublabel-Accurate Energy Minimization
论文作者
论文摘要
我们解决了最小化一类能量功能的问题,该功能由数据和平滑度术语组成,这些术语通常发生在机器学习,计算机视觉和模式识别中。尽管离散优化方法能够提供理论最优保证,但它们只能处理有限数量的标签,因此会遭受标签离散偏置的困扰。现有的连续优化方法可以找到Sublabel精确的解决方案,但对于大标签空间而言,它们并不有效。在这项工作中,我们提出了一种有效的Sublabel精确方法,该方法利用了连续模型和离散模型的最佳属性。我们将问题分为两个顺序的步骤:(i)选择标签范围的全局离散优化,(ii)有效连续的sublabel-carcurate局部细化了所选范围内能量函数的凸近近似值。这样做可以使我们能够提高时间和记忆效率,同时实际上将准确性保持在与连续凸放放松方法相同的水平上,此外,在离散方法级别上提供了理论最佳保证。最后,我们展示了提出的对一般成对平滑度项的灵活性,因此它适用于广泛的正规化。图像剥落问题的说明示例的实验证明了该方法的特性。代码复制实验可在\ url {https://github.com/nurlanov-zh/sublabel-accurate-alpha-expansion}获得。
We address the problem of minimizing a class of energy functions consisting of data and smoothness terms that commonly occur in machine learning, computer vision, and pattern recognition. While discrete optimization methods are able to give theoretical optimality guarantees, they can only handle a finite number of labels and therefore suffer from label discretization bias. Existing continuous optimization methods can find sublabel-accurate solutions, but they are not efficient for large label spaces. In this work, we propose an efficient sublabel-accurate method that utilizes the best properties of both continuous and discrete models. We separate the problem into two sequential steps: (i) global discrete optimization for selecting the label range, and (ii) efficient continuous sublabel-accurate local refinement of a convex approximation of the energy function in the chosen range. Doing so allows us to achieve a boost in time and memory efficiency while practically keeping the accuracy at the same level as continuous convex relaxation methods, and in addition, providing theoretical optimality guarantees at the level of discrete methods. Finally, we show the flexibility of the proposed approach to general pairwise smoothness terms, so that it is applicable to a wide range of regularizations. Experiments on the illustrating example of the image denoising problem demonstrate the properties of the proposed method. The code reproducing experiments is available at \url{https://github.com/nurlanov-zh/sublabel-accurate-alpha-expansion}.